Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.934
Filtrar
1.
Ann Hepatol ; : 101510, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38714224

RESUMO

INTRODUCTION AND OBJECTIVES: Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide and can progress to non-alcoholic steatohepatitis (NASH) and, ultimately, cirrhosis. Clostridioides difficile is the most common nosocomial cause of diarrhea and is associated with worse clinical outcomes in other liver diseases, including cirrhosis, but has not been extensively evaluated in concomitant NAFLD/NASH. METHODS: We conducted a retrospective cohort study using the National Inpatient Sample database from 2015 to 2017. Patients with a diagnosis of CDI, NAFLD, and NASH were identified using International Classification of Diseases (Tenth Revision) codes. The outcomes of our study include length of stay, hospitalization cost, mortality, and predictors of mortality. RESULTS: The CDI and NASH cohort had a higher degree of comorbidity burden and prevalence of peptic ulcer disease, congestive heart failure, diabetes mellitus, and cirrhosis. Patients with NASH and CDI had a significantly higher mortality rate compared to the CDI only cohort (mortality, 7.11 % vs 6.36 %; P = 0.042). Patients with CDI and NASH were at increased risk for liver-related complications, acute kidney injury, and septic shock (P < 0.001) compared to patients with CDI only. Older age, intestinal complications, pneumonia, sepsis and septic shock, and liver failure conferred an increased risk of mortality among the CDI and NASH cohort. CONCLUSIONS: Patients with NASH had a higher rate of liver-related complications, progression to septic shock, and mortality rate following CDI infection compared to the CDI only cohort.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38726780

RESUMO

OBJECTIVES: This study aimed to explore the key oncogenic factor of metabolicassociated steatohepatitis (MASH) to hepatocellular carcinoma (HCC). METHODS: We utilized four differential GEO datasets (GSE164760, GSE139602, GSE197112, and GSE49541) to identify the key oncogenic factor for MASH-related HCC. The differential genes were analyzed using the GEO2R algorithm online. The GEPIA online website was used to explore the expression of selected four genes (SPP1, GNMT, CLDN11, and THBS2). The genetic alterations in genes were estimated by the cBioPortal website. The Kaplan-Meier Plotter online database was applied to explore the prognostic value of SPP1. Univariate and multivariate Cox analyses were carried out to further confirm the prognostic value of SPP1. The GO and KEGG enrichment analysis exported associated pathways with SPP1 expression. The positively or negatively related immune cells and immune checkpoint expressions were identified through Pearson correlation analysis. The lipogenesis-associated proteins were detected using western blotting and fluorescence. The high-fat diet (HFD) mouse model was constructed, and liver samples were collected. RESULTS: SPP1, GNMT, CLDN11, and THBS2 were determined in the transformation process of MASH to liver fibrosis. SPP1 and GNMT were upregulated in the HCC tumor tissue. SPP1, in particular, had the potential to be the prognostic factor through Cox analysis. Remarkably, SPP1 was highly expressed in HCC compared to normal tissues in three independent datasets (GSE121248, GSE14520, and GSE45267). SPP1 is mainly involved in the amplification and deep deletion mutations. SPP1 was found to be strongly correlated with ANXA2 expression, and ANXA2 was also highly expressed in HCC with significant prognostic performance. Moreover, SPP1 was found to participate in the carcinogenic mechanism and correlate with immune cells and immune checkpoint expression. SPP1 knockdown suppressed the SREBP1 and FASN expressions and increased the SIRT1 expression in vitro. Moreover, the HFD model validated the upregulation of SPP1 in the fatty liver in vivo. CONCLUSION: SPP1 may be the key oncogenic factor for the transformation of MASH to HCC, and it could be a potential immunotherapeutic target in HCC.

3.
J Lipid Res ; : 100558, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38729350

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common form of liver disease and poses significant health risks to patients who progress to metabolic dysfunction-associated steatohepatitis (MASH). Fatty acid (FA) overload alters endoplasmic reticulum (ER) calcium stores and induces mitochondrial oxidative stress in hepatocytes, leading to hepatocellular inflammation and apoptosis. Obese mice have impaired liver sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) function, which normally maintains intracellular calcium homeostasis by transporting Ca2+ ions from the cytoplasm to ER. We hypothesized that restoration of SERCA activity would improve diet-induced steatohepatitis in mice by limiting ER stress and mitochondrial dysfunction. Wild-type and melanocortin-4 receptor knockout (Mc4r-/-) mice were placed on either chow or Western diet (WD) for 8 weeks. Half of the WD-fed mice were administered CDN1163 to activate SERCA, which reduced liver fibrosis and inflammation. SERCA activation also restored glucose tolerance and insulin sensitivity, improved histological markers of MASH, increased expression of antioxidant enzymes, and decreased expression of oxidative stress and ER stress genes. CDN1163 decreased hepatic citric acid cycle flux and liver pyruvate cycling, enhanced expression of mitochondrial respiratory genes, and shifted hepatocellular [NADH]/[NAD+] and [NADPH]/[NADP+] ratios to a less oxidized state, which was associated with elevated polyunsaturated fatty acid (PUFA) content of liver lipids. In sum, the data demonstrate that pharmacological SERCA activation limits MASLD progression and prevents metabolic dysfunction induced by WD feeding in mice.

4.
Front Pharmacol ; 15: 1327008, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741586

RESUMO

Introduction: TT-01025-CL is an oral, irreversible small molecule that potently inhibits vascular adhesion protein-1 (VAP-1) for the treatment of inflammation associated with non-alcoholic steatohepatitis (NASH). The objectives of this study were to evaluate the safety/tolerability, pharmacokinetics, and pharmacodynamics of TT-01025-CL, a VAP-1 inhibitor, in healthy Chinese volunteers. Methods: Double-blind, placebo-controlled, dose-escalation studies were conducted in subjects randomized to receive oral once-daily TT-01025-CL (ranges: 10-300 mg [single dose]; 20-100 mg for 7 days [multiple doses]) or placebo under fasting conditions. Safety and tolerability were monitored throughout the study. Pharmacokinetic (PK) parameters were determined using non-compartment analysis. The activity of semicarbazide-sensitive amine oxidase (SSAO)-specific amine oxidase and the accumulation of methylamine in plasma were evaluated as pharmacodynamic (PD) biomarkers. Results: A total of 36 (single-dose group) and 24 (multiple-dose group) subjects were enrolled in the study. No serious adverse events (AEs) were reported, and no subject discontinued due to an AE. All treatment-emergent adverse events (TEAEs) were mild and moderate in intensity. No dose-dependent increase in the intensity or frequency of events was observed. TT-01025-CL was rapidly absorbed after administration. In the single-ascending dose (SAD) study, median Tmax ranged from 0.5 to 2 h and mean t1/2z ranged from 2.09 to 4.39 h. PK was linear in the range of 100-300 mg. The mean Emax of methylamine ranged from 19.167 to 124.970 ng/mL, with mean TEmax ranging from 13.5 to 28.0 h. The complete inhibition (>90%) of SSAO activity was observed at 0.25-0.5 h post-dose and was maintained 48-168 h post-dose. In the multiple-ascending dose (MAD) study, a steady state was reached by day 5 in the 40 mg and 100 mg dose groups. Negligible accumulation was observed after repeated dosing. PK was linear in the range of 20-100 mg. Plasma methylamine appeared to plateau at doses of 20 mg and above, with mean Emax ranging from 124.142 to 156.070 ng/mL and mean TEmax ranging from 14.2 to 22.0 h on day 7. SSAO activity in plasma was persistently inhibited throughout the treatment period. No evident change in methylamine and SSAO activity was observed in the placebo groups. Conclusion: TT-01025-CL was safe and well-tolerated at a single dose of up to 300 mg and multiple doses of up to 100 mg once daily for 7 consecutive days. Absorption and elimination occurred rapidly in healthy volunteers. Linearity in plasma exposure was observed. TT-01025-CL inhibited SSAO activity rapidly and persistently in humans. The profile of TT-01025-CL demonstrates its suitability for further clinical development.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38729399

RESUMO

BACKGROUND AND AIMS: Cotadutide, a peptide co-agonist at the glucagon-like peptide-1 (GLP-1) and glucagon (GCG) receptors has demonstrated robust improvements in body weight, glycemia, and hepatic fat fraction (HFF) in patients living with obesity and type 2 diabetes mellitus. METHODS: In PROXYMO, a 19-week randomized double-blind placebo-controlled trial, the safety and efficacy of cotadutide (600 µg, 300 µg) or placebo were evaluated in 74 participants with biopsy-proven non-cirrhotic MASH with fibrosis. Analyses were performed using intent-to-treat and modified intent-to-treat population data. RESULTS: Dose- and time-dependent improvements in HFF, alanine (ALT) and aspartate aminotransferase (AST), markers of liver health, and metabolic parameters were observed with significant improvements after 19 weeks with 600 µg ([LS] mean difference vs placebo [95%CI] for absolute HFF: -5.0% [-8.5,-1.5]; ALT: -23.5 U/L [-47.1,-1.8]; AST: -16.8 U/L [-33.0,-0.8]). Incidences of any grade treatment-emergent adverse events (TEAE) were 91.7%, 76.9% and 37.5% with cotadutide 600 µg, 300 µg, and placebo respectively. The majority were gastrointestinal (GI), mild to moderate in severity and generally consistent with other incretins at this stage of development. TEAE leading to treatment discontinuation were 16.7%, 7.7% and 4.2% with cotadutide 600 µg, 300 µg, and placebo respectively. CONCLUSION: PROXYMO provides preliminary evidence for the safety and efficacy of GLP-1/GCG receptor co-agonism in biopsy-proven non-cirrhotic MASH with fibrosis, supporting further evaluation of this mechanism in MASH.

6.
Clin Mol Hepatol ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38726504

RESUMO

Background/Aims: metabolic dysfunction-associated steatohepatitis (MASH) is an unmet clinical challenge due to the rapid increased occurrence but lacking approved drugs. Autophagy-related protein 16-like 1 (ATG16L1) plays an important role in the process of autophagy, which is indispensable for proper biogenesis of the autophagosome, but its role in modulating macrophage-related inflammation and metabolism during MASH has not been documented. Here, we aimed to elucidate the role of ATG16L1 in the progression of MASH. Methods: Expression analysis was performed with liver samples from human and mice. MASH models were induced in myeloid-specific Atg16l1-deficient and myeloid-specific Atg16l1-overexpressed mice by high-fat and high-cholesterol diet or methionine- and choline-deficient diet to explore the function and mechanism of macrophage ATG16L1 in MASH. Results: Macrophage-specific Atg16l1 knockout exacerbated MASH and inhibited energy expenditure, whereas macrophage-specific Atg16l1 transgenic overexpression attenuated MASH and promotes energy expenditure. Mechanistically, Atg16l1 knockout inhibited macrophage lipophagy, thereby suppressing macrophage ß-oxidation and decreasing the production of 4-hydroxynonenal (4-HNE), which further inhibited stimulator of interferon genes (STING) carbonylation. STING palmitoylation was enhanced, STING trafficking from the ER to the Golgi was promoted, and downstream STING signaling was activated, promoting proinflammatory and profibrotic cytokines secretion, resulting in hepatic steatosis and HSCs activation. Moreover, Atg16l1-deficiency enhanced macrophage phagosome ability but inhibited lysosome formation, engulfing mtDNA released by pyroptotic hepatocytes. Increased mtDNA promoted cGAS/STING signaling activation. Moreover, pharmacological promotion of ATG16L1 substantially blocked MASH progression. Conclusions: ATG16L1 suppresses MASH progression by maintaining macrophage lipophagy, restraining liver inflammation, and may be a promising therapeutic target for MASH management.

7.
Gut ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38744443

RESUMO

OBJECTIVE: Squalene epoxidase (SQLE) promotes metabolic dysfunction-associated steatohepatitis-associated hepatocellular carcinoma (MASH-HCC), but its role in modulating the tumour immune microenvironment in MASH-HCC remains unclear. DESIGN: We established hepatocyte-specific Sqle transgenic (tg) and knockout mice, which were subjected to a choline-deficient high-fat diet plus diethylnitrosamine to induce MASH-HCC. SQLE function was also determined in orthotopic and humanised mice. Immune landscape alterations of MASH-HCC mediated by SQLE were profiled by single-cell RNA sequencing and flow cytometry. RESULTS: Hepatocyte-specific Sqle tg mice exhibited a marked increase in MASH-HCC burden compared with wild-type littermates, together with decreased tumour-infiltrating functional IFN-γ+ and Granzyme B+ CD8+ T cells while enriching Arg-1+ myeloid-derived suppressor cells (MDSCs). Conversely, hepatocyte-specific Sqle knockout suppressed tumour growth with increased cytotoxic CD8+ T cells and reduced Arg-1+ MDSCs, inferring that SQLE promotes immunosuppression in MASH-HCC. Mechanistically, SQLE-driven cholesterol accumulation in tumour microenvironment underlies its effect on CD8+ T cells and MDSCs. SQLE and its metabolite, cholesterol, impaired CD8+ T cell activity by inducing mitochondrial dysfunction. Cholesterol depletion in vitro abolished the effect of SQLE-overexpressing MASH-HCC cell supernatant on CD8+ T cell suppression and MDSC activation, whereas cholesterol supplementation had contrasting functions on CD8+ T cells and MDSCs treated with SQLE-knockout supernatant. Targeting SQLE with genetic ablation or pharmacological inhibitor, terbinafine, rescued the efficacy of anti-PD-1 treatment in MASH-HCC models. CONCLUSION: SQLE induces an impaired antitumour response in MASH-HCC via attenuating CD8+ T cell function and augmenting immunosuppressive MDSCs. SQLE is a promising target in boosting anti-PD-1 immunotherapy for MASH-HCC.

8.
Gastroenterol. hepatol. (Ed. impr.) ; 47(5): 463-472, may. 2024. tab
Artigo em Inglês | IBECS | ID: ibc-CR-356

RESUMO

Objective To better understand drivers of disease progression in non-alcoholic steatohepatitis (NASH), we assessed clinical and sociodemographic markers of fibrosis progression in adults with NASH.Patients and methodsPhysician-reported patient demographics and clinical characteristics were utilised from the real-world Global Assessment of the Impact of NASH (GAIN) study. Factors associated with likelihood of fibrosis progression since NASH diagnosis were identified using a logistic regression model.ResultsOverall, 2349 patients in Europe from the GAIN study were included; mean age was 54.6 years and 41% were women. Significant covariates included age, years since diagnosis, employment status, fibrosis stage at diagnosis, type 2 diabetes mellitus, hypertension, liver transplant and liver biopsy at diagnosis. Risk of progression was 1.16 (95% confidence interval 1.12–1.20; p<0.001) times higher for each additional year since NASH diagnosis and 5.43 (2.68–11.37; p<0.001) times higher when physicians proposed a liver transplant at diagnosis. Compared with full-time employed patients, risk of progression was 1.77 (1.19–2.60; p=0.004) times higher for unemployed patients and 3.16 (1.30–7.63; p=0.010) times higher for those unable to work due to NASH.ConclusionsDisease duration, NASH severity and presence of other metabolic comorbidities could help to assess risk of progression in patients with NASH. (AU)


Objetivo Para comprender mejor los factores que impulsan la progresión de la enfermedad en la esteatohepatitis no alcohólica (NASH), evaluamos los marcadores clínicos y sociodemográficos de la progresión de la fibrosis en adultos con NASH.Pacientes y métodosSe utilizaron las características demográficas y clínicas de los pacientes informadas por los médicos del estudio de Evaluación Global del Impacto de NASH (GAIN) del mundo real. Los factores asociados con la probabilidad de progresión de la fibrosis desde el diagnóstico de EHNA se identificaron mediante un modelo de regresión logística.ResultadosEn total, se incluyeron 2.349 pacientes en Europa del estudio GAIN; la edad media fue 54,6 años y el 41% eran mujeres. Las covariables significativas incluyeron edad, años desde el diagnóstico, situación laboral, estadio de fibrosis en el momento del diagnóstico, diabetes mellitus tipo 2, hipertensión, trasplante de hígado y biopsia de hígado en el momento del diagnóstico. El riesgo de progresión fue 1,16 (intervalo de confianza del 95% 1,12-1,20; p < 0,001) veces mayor por cada año adicional desde el diagnóstico de EHNA y 5,43 (2,68-11,37; p < 0,001) veces mayor cuando los médicos propusieron un trasplante de hígado. en el momento del diagnóstico. En comparación con los pacientes empleados a tiempo completo, el riesgo de progresión fue 1,77 (1,19-2,60; p = 0,004) veces mayor para los pacientes desempleados y 3,16 (1,30-7,63; p = 0,010) veces mayor para aquellos que no podían trabajar debido a a NASH.ConclusionesLa duración de la enfermedad, la gravedad de NASH y la presencia de otras comorbilidades metabólicas podrían ayudar a evaluar el riesgo de progresión en pacientes con NASH. (AU)


Assuntos
Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatias/prevenção & controle , Cirrose Hepática/prevenção & controle , Cirrose Hepática/terapia , Biópsia , Fatores de Risco
9.
J Inflamm Res ; 17: 2711-2730, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716300

RESUMO

Background: This study aims to elucidate the role of mitochondrial autophagy in metabolic dysfunction-associated steatohepatitis (MASH) by identifying and validating key mitophagy-related genes and diagnostic models with diagnostic potential. Methods: The gene expression profiles and clinical information of MASH patients and healthy controls were obtained from the Gene Expression Omnibus database (GEO). Limma and functional enrichment analysis were used to identify the mitophagy-related differentially expressed genes (mito-DEGs) in MASH patients. Machine learning models were used to select key mito-DEGs and evaluate their efficacy in the early diagnosis of MASH. The expression levels of the key mito-DEGs were validated using datasets and cell models. A nomogram was constructed to assess the risk of MASH progression based on the expression of the key mito-DEGs. The mitophagy-related molecular subtypes of MASH were evaluated. Results: Four mito-DEGs, namely MRAS, RAB7B, RETREG1, and TIGAR were identified. Among the machine learning models employed, the Support Vector Machine demonstrated the highest AUC value of 0.935, while the Light Gradient Boosting model exhibited the highest accuracy (0.9189), kappa (0.7204), and F1-score (0.9508) values. Based on these models, MRAS, RAB7B, and RETREG1 were selected for further analysis. The logistic regression model based on these genes could accurately predict MASH diagnosis. The nomogram model based on these DEGs exhibited excellent prediction performance. The expression levels of the three mito-DEGs were validated in the independent datasets and cell models, and the results were found to be consistent with the findings obtained through bioinformatics analysis. Furthermore, our findings revealed significant differences in gene expression patterns, immune characteristics, biological functions, and enrichment pathways between the mitophagy-related molecular subtypes of MASH. Subtype-specific small-molecule drugs were identified using the CMap database. Conclusion: Our research provides novel insights into the role of mitophagy in MASH and uncovers novel targets for predictive and personalized MASH treatments.

10.
Toxicol Sci ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710495

RESUMO

Constitutive Androstane Receptor (CAR, Nr1i3), a liver nuclear receptor and xenobiotic sensor, induces drug, steroid and lipid metabolizing enzymes, stimulates liver hypertrophy and hyperplasia, and ultimately, hepatocellular carcinogenesis. The mechanisms linking early CAR responses to later disease development are poorly understood. Here we show that exposure of CD-1 mice to TCPOBOP, a halogenated xenochemical and selective CAR agonist ligand, induces pericentral steatosis marked by hepatic accumulation of cholesterol and neutral lipid, and elevated circulating alanine aminotransferase, indicating hepatocyte damage. TCPOBOP-induced steatosis was weaker in the pericentral region but stronger in the periportal region in females compared to males. Early (1-day) TCPOBOP transcriptional responses were enriched for CAR-bound primary response genes, and for lipogenesis and xenobiotic metabolism and oxidative stress protection pathways; late (2-wk) TCPOBOP responses included many CAR binding-independent secondary response genes, with enrichment for macrophage activation, immune response and cytokine and reactive oxygen species production. Late upstream regulators specific to TCPOBOP-exposed male liver were linked to pro-inflammatory responses and hepatocellular carcinoma progression. TCPOBOP administered weekly to male mice using a high corn oil vehicle activated carbohydrate-responsive transcription factor (MLXIPL)-regulated target genes, dysregulated mitochondrial respiratory and translation regulatory pathways, and induced more advanced liver pathology. Overall, TCPOBOP exposure recapitulates histological and gene expression changes characteristic of emerging steatotic liver disease, including secondary gene responses in liver non-parenchymal cells indicative of transition to a more advanced disease state. Upstream regulators of both the early and late TCPOBOP response genes include novel biomarkers for foreign chemical-induced metabolic dysfunction-associated steatotic liver disease.

11.
Carbohydr Polym ; 337: 122139, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710550

RESUMO

A novel RG-I pectin-like polysaccharide, YJ3A1, was purified from the flowers of Rosa chinensis and its structure and hepatoprotective effect in vivo and in vitro were investigated. The backbone of this polysaccharide is mainly composed of 1, 4-galactan, 1, 4-linked α-GalpA and 1, 2-linked α-Rhap disaccharide repeating unit attached by 1, 6-linked ß-Galp or 1, 5-linked α-Araf on C-4 of the Rhap. Interestingly, oral administration of YJ3A1 significantly ameliorates NASH-associated inflammation, oxidative stress and fibrosis and does not affect the liver morphology of normal mice at a dose of 50 mg/kg. The mechanism study suggests that the biological activity may associate to inactivating of high-mobility group box 1 protein (HMGB1)/TLR4/NF-κB and Akt signaling pathways by restraining the expression and release of HMGB1, thereby impeding the effect of NASH. The current findings outline a novel leading polysaccharide for new drug candidate development against NASH.


Assuntos
Proteína HMGB1 , NF-kappa B , Hepatopatia Gordurosa não Alcoólica , Pectinas , Rosa , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Rosa/química , Receptor 4 Toll-Like/metabolismo , Proteína HMGB1/metabolismo , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Transdução de Sinais/efeitos dos fármacos , Camundongos , Pectinas/farmacologia , Pectinas/química , Pectinas/isolamento & purificação , Masculino , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Estresse Oxidativo/efeitos dos fármacos
12.
Phytomedicine ; 129: 155703, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38723527

RESUMO

BACKGROUND: Non-alcoholic steatohepatitis (NASH), the inflammatory subtype in the progression of non-alcoholic fatty liver disease, is becoming a serious burden threatening human health, but no approved medication is available to date. Mononoside is a natural active substance derived from Cornus officinalis and has been confirmed to have great potential in regulating lipid metabolism in our previous studies. However, its effect and mechanism to inhibit the progression of NASH remains unclear. PURPOSE: Our work aimed to explore the action of mononoside in delaying the progression of NASH and its regulatory mechanisms from the perspective of regulating lipophagy. METHODS AND RESULTS: Male C57BL/6 mice were fed with a high-fat and high-fructose diet for 16 weeks to establish a NASH mouse model. After 8 weeks of high-fat and high-fructose feeding, these mice were administrated with different doses of morroniside. H&E staining, ORO staining, Masson staining, RNA-seq, immunoblotting, and immunofluorescence were performed to determine the effects and molecular mechanisms of morroniside in delaying the progression of NASH. In this study, we found that morroniside is effective in attenuating hepatic lipid metabolism disorders and inflammatory response activation, thereby limiting the progression from simple fatty liver to NASH in high-fat and high-fructose diet-fed mice. Mechanistically, we identified AMPK signaling as the key molecular pathway for the positive efficacy of morroniside by transcriptome sequencing. Our results revealed that morroniside maintained hepatic lipid metabolism homeostasis and inhibited NLRP3 inflammasome activation by promoting AMPKα phosphorylation-mediated lipophagy and fatty acid oxidation. Consistent results were observed in palmitic acid-treated cell models. Of particular note, silencing AMPKα both in vivo and in vitro reversed morroniside-induced lipophagy flux enhancement and NLRP3 inflammasome inhibition, emphasizing the critical role of AMPKα activation in the effect of morroniside in inhibiting NASH progression. CONCLUSION: In summary, the present study provides strong evidence for the first time that morroniside inhibits NASH progression by promoting AMPK-dependent lipophagy and inhibiting NLRP3 inflammasome activation, suggesting that morroniside is expected to be a potential molecular entity for the development of therapeutic drugs for NASH.

13.
Eur J Pharm Sci ; 198: 106792, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38714237

RESUMO

Non-alcoholic steatohepatitis (NASH) is characterized by liver inflammation, fat accumulation, and collagen deposition. Due to the limited availability of effective treatments, there is a pressing need to develop innovative strategies. Given the complex nature of the disease, employing combination approaches is essential. Hedgehog signaling has been recognized as potentially promoting NASH, and cholesterol can influence this signaling by modifying the conformation of PTCH1 and SMO activity. HSP90 plays a role in the stability of SMO and GLI proteins. We revealed significant positive correlations between Hedgehog signaling proteins (Shh, SMO, GLI1, and GLI2) and both cholesterol and HSP90 levels. Herein, we investigated the novel combination of the cholesterol-lowering agent lovastatin and the HSP90 inhibitor PU-H71 in vitro and in vivo. The combination demonstrated a synergy score of 15.09 and an MSA score of 22.85, as estimated by the ZIP synergy model based on growth inhibition rates in HepG2 cells. In a NASH rat model induced by thioacetamide and a high-fat diet, this combination therapy extended survival, improved liver function and histology, and enhanced antioxidant defense. Additionally, the combination exhibited anti-inflammatory and anti-fibrotic potential by influencing the levels of TNF-α, TGF-ß, TIMP-1, and PDGF-BB. This effect was evident in the suppression of the Col1a1 gene expression and the levels of hydroxyproline and α-SMA. These favorable outcomes may be attributed to the combination's potential to inhibit key Hedgehog signaling molecules. In conclusion, exploring the applicability of this combination contributes to a more comprehensive understanding and improved management of NASH and other fibrotic disorders.

14.
Bull Exp Biol Med ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717567

RESUMO

The levels of NO metabolites in the plasma and mRNA of the NOS3, ATG9B, and NOS2 genes in peripheral blood leukocytes of healthy people and patients with early forms of non-alcoholic fatty liver disease (steatosis and weak activity non-alcoholic steatohepatitis) were studied. In patients with steatohepatitis, the concentration of NO metabolites in the blood and the level of mRNA of the NOS2 gene were higher than in patients with steatosis and healthy people. These differences can be of diagnostic value for distinguishing between steatosis and weak activity steatohepatitis in non-alcoholic fatty liver disease. A correlation between the levels of NO metabolites and the expression of the NOS2 gene in weak activity steatohepatitis was established, which indicates activation of NO synthesis in non-alcoholic steatohepatitis due to the expression of the inducible NO synthase gene. The level of the NOS2 gene mRNA in peripheral blood leukocytes of patients with weak activity steatohepatitis correlated with the level of TNFα and IL-6 cytokines. An increase in the level of NO in the blood in weak activity steatohepatitis correlated with the level of MDA, an indicator of oxidative stress.

15.
Liver Int ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38702958

RESUMO

BACKGROUND AND AIMS: Steatotic liver disease (SLD) is generally considered to represent a hepatic manifestation of metabolic syndrome and includes a disease spectrum comprising isolated steatosis, metabolic dysfunction-associated steatohepatitis, liver fibrosis and ultimately cirrhosis. A better understanding of the detailed underlying pathogenic mechanisms of this transition is crucial for the design of new and efficient therapeutic interventions. Thymocyte differentiation antigen (Thy-1, also known as CD90) expression on fibroblasts controls central functions relevant to fibrogenesis, including proliferation, apoptosis, cytokine responsiveness, and myofibroblast differentiation. METHODS: The impact of Thy-1 on the development of SLD and progression to fibrosis was investigated in high-fat diet (HFD)-induced SLD wild-type and Thy-1-deficient mice. In addition, the serum soluble Thy-1 (sThy-1) concentration was analysed in patients with metabolic dysfunction-associated SLD stratified according to steatosis, inflammation, or liver fibrosis using noninvasive markers. RESULTS: We demonstrated that Thy-1 attenuates the development of fatty liver and the expression of profibrogenic genes in the livers of HFD-induced SLD mice. Mechanistically, Thy-1 directly inhibits the profibrotic activation of nonparenchymal liver cells. In addition, Thy-1 prevents palmitic acid-mediated amplification of the inflammatory response of myeloid cells, which might indirectly contribute to the pronounced development of liver fibrosis in Thy-1-deficient mice. Serum analysis of patients with metabolically associated steatotic liver disease syndrome revealed that sThy-1 expression is correlated with liver fibrosis status, as assessed by liver stiffness, the Fib4 score, and the NAFLD fibrosis score. CONCLUSION: Our data strongly suggest that Thy-1 may function as a fibrosis-protective factor in mouse and human SLD.

16.
J Control Release ; 370: 367-378, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38692439

RESUMO

Non-alcoholic steatohepatitis (NASH), now known as metabolic dysfunction-associated steatohepatitis (MASH), involves oxidative stress caused by the overproduction of reactive oxygen species (ROS). Small-molecule antioxidants have not been approved for antioxidant chemotherapy because of severe adverse effects that collapse redox homeostasis, even in healthy tissues. To overcome these disadvantages, we have been developing poly(ethylene glycol)-block-poly(cysteine) (PEG-block-PCys)-based self-assembling polymer nanoparticles (NanoCyses), releasing Cys after in vivo degradation by endogenous enzymes, to obtain antioxidant effects without adverse effects. However, a comprehensive investigation of the effects of polymer design on therapeutic outcomes has not yet been conducted to develop our NanoCys system for antioxidant chemotherapy. In this study, we synthesized different poly(L-cysteine) (PCys) chains whose sulfanyl groups were protected by tert-butyl thiol (StBu) and butyryl (Bu) groups to change the reactivity of the side chains, affording NanoCys(SS) and NanoCys(Bu), respectively. To elucidate the importance of the polymer design, these NanoCyses were orally administered to MASH model mice as a model of oxidative stress-related diseases. Consequently, the acyl-protective NanoCys(Bu) significantly suppressed hepatic lipid accumulation and oxidative stress compared to NanoCys(SS). Furthermore, we substantiated that shorter PCys were much better than longer PCys for therapeutic outcomes and the effects related to the liberation properties of Cys from these nanoparticles. Owing to its antioxidant functions, NanoCyses also significantly attenuated hepatic inflammation and fibrosis in the MASH mouse model.

18.
J Mol Cell Biol ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692847

RESUMO

The rs72613567:TA polymorphism in 17-beta hydroxysteroid dehydrogenase 13 (HSD17B13) has been found to reduce the progression from steatosis to nonalcoholic steatohepatitis. In this study, we sought to define the pathogenic role of HSD17B13 in triggering liver inflammation. Here we find that HSD17B13 forms liquid-liquid phase separation (LLPS) around lipid droplets in the livers of nonalcoholic steatohepatitis patients. The dimerization of HSD17B13 supports the LLPS formation and promotes its enzymatic function. HSD17B13 LLPS increases the biosynthesis of platelet activating factor (PAF), which in turn promotes fibrinogen synthesis and leukocyte adhesion. Blockade of PAFR or STAT3 pathway inhibited the fibrinogen synthesis and leukocyte adhesion. Importantly, adeno-associated viral-mediated xeno-expression of human HSD17B13 exacerbated western diet/carbon tetrachloride-induced liver inflammation in Hsd17b13-/- mice. In conclusion, our results suggest that HSD17B13 LLPS triggers liver inflammation by promoting PAF-mediated leukocyte adhesion, and targeting HSD17B13 phase transition could be a promising therapeutic approach for treating hepatic inflammation in chronic liver disease.

19.
Future Microbiol ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700288

RESUMO

Aim: Endogenous ethanol production emerges as a mechanism of nonalcoholic steatohepatitis, obesity, diabetes and auto-brewery syndrome. Methods: To identify ethanol-producing microbes in humans, we used the NCBI taxonomy browser and the PubMed database with an automatic query and manual verification. Results: 85 ethanol-producing microbes in human were identified. Saccharomyces cerevisiae, Candida and Pichia were the most represented fungi. Enterobacteriaceae was the most represented bacterial family with mainly Escherichia coli and Klebsiella pneumoniae. Species of the Lachnospiraceae and Clostridiaceae family, of the Lactobacillales order and of the Bifidobacterium genus were also identified. Conclusion: This catalog will help the study of ethanol-producing microbes in human in the pathophysiology, diagnosis, prevention and management of human diseases associated with endogenous ethanol production.


Our bodies are home to a community of tiny living organisms like bacteria, viruses and archaea, collectively known as the microbiota. These microbes are crucial for our well-being and the proper functioning of our bodies. Certain things, like antibiotics or an imbalanced diet, can disturb this microbial community, known as dysbiosis. This can lead to illness. This review focuses on dysbiosis related to the production of ethanol, a type of alcohol, within our bodies. While the disruption of the microbiota has been linked to several health issues, the role of ethanol production in this is not well explored. This review aims to shed light on the microbes involved in this process. We found 85 microbes capable of producing ethanol in the human body, including 61 bacterial and 24 yeast species. This review provides a detailed updated catalog of ethanol-producing microbes in humans. Understanding these microbes and their role in diseases related to ethanol production could pave the way for better diagnostic tools and treatments in the future.

20.
Toxicol Res (Camb) ; 13(3): tfae068, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38737340

RESUMO

Introduction: Currently, the role and mechanism of dopamine in non-alcoholic steatohepatitis (NASH) remains unclear. Methods: In vitro experiments utilized FFA and LPS to establish NASH cell models, while a fibrotic cell model was created using TGFß1 to investigate the impact of dopamine on cellular lipid metabolism, inflammation, and fibrosis. In vivo experiments involved the use of MCD and HFD diets to induce NASH in mouse models for observing the effects of dopamine on NASH disease progression. Results: Our study showed that dopamine significantly downregulated the expression levels of Caspase 1, IL-1ß and IL18 in the HepG2 NASH cell model. In addition, dopamine could inhibit the TGF-ß1-induced accumulation of collagen I and α-SMA in LX2 cells. In vivo experiments have shown that dopamine attenuation in mice is associated with MCD diet-induced and HFD-induced steatohepatitis. Mechanically, dopamine inhibits the p65 signaling pathway in NASH. Conclusion: In conclusion, the present study demonstrates the role of dopamine in ameliorating the symptoms of NASH and provides a direction for future research on the application of the dopaminergic system to liver disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...